答题是对于知识点掌握情况的一种体现,要让学生学得懂做得出,数学答题技巧就显得尤为重要。下面是我为大家整理的关于初中数学选择填空答题技巧,希望对您有所帮助。欢迎大家阅读参考学习!
1初中数学选择填空答题技巧
数学试卷答得好坏,主要依靠平日的基本功。只要“双基”扎实,临场不乱,重审题、重思考、轻定势,那么成绩不会差。切忌慌乱,同时也不可盲目轻敌,觉得自己平时数学成绩不错,再看到头几道题简单,就欣喜若狂,导致“大意失荆州”。不是审题有误就是数据计算错误,这也是考试发挥失常的一个重要原因,要认真对待考试,认真对待每一道题主要把好4个关:(1)把好计算的准确关。(2)把好理解审题关“宁可多审三分,不抢答题一秒”。(3)把好表达规范关。(4)把好思维、书写同步关
首先,我们来分析一下选择题的特点.与大题有所不同,选择题只求正确结论,不用遵循步骤,因此,在解答时应该突出一个“选”字,尽量减少书写过程,要充分利用题干和选项两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略.选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做!
2中考数学选择题答题技巧
正确的读题习惯提高理解准确度
初中阶段的数学题在呈现方式来看比小学数学显得更为复杂,这要求学生有较好的分析问题和解决问题的能力。由此如何最快的准备理解题意就显得尤为重要。比如在选择填空题中经常会出现选择正确或错误的选项,学生在对“正确”、“错误”这样的关键词进行画圈标注后,可以有效避免答题失误;在应用题解答过程中,对于体现等量关系的 “倍数”、“相等”、“多少”等关键词的标注,可以大大减少学生构建方程求解的时间;在含有图形的证明或解答题中,学会将题目中的数学语言在图像上用具体符号进行标注, 抽象思维 得以形象化,可以较好的辅助学生逻辑证明的达成。
恰当的答题顺序常常能够事半功倍
通俗来说要培养学生先易后难的答题习惯,然而很多孩子常常难以在考试中严格执行。以深圳市数学中考为例,考查方式通常为12道选择题4道填空6道解答题。其中选择题最后两题,填空题最后一题,倒数第二题最后一问以及最后一大题有较大难度。学生在答题过程中,如果对于选择填空的难题部分遇到困难,可以考虑先猜想一个答案后先回答有把握的其他题目。如此可以有效的避免宝贵答题时间的浪费。
良好的书写习惯相当于隐形加分
良好的书写习惯体现为书写的清晰工整和答题格式的完整流畅。字迹工整清晰,不论是在哪个学科都显得尤为重要,对于数学更是如此。通常情况下,数学解答题都分为几问,答题过程相对较长,学生如果能够将有限的答题区域相应几块。既便于便于自己答题检查也利用老师改卷。最忌讳学生答题东一块西一块甚至是“贪食蛇”式的书写顺序,大量涂改的出现也会影响老师的评卷。
3数学选择填空答题策略
排除法
因为选择题的答案就在选项中,如果根据题目的条件,缩小答案的范围,就可能排除选项中的某些明显错误的项,那么选对的概率将大大提高,主要适合比较大小类型、求解析式、确定函数图像等问题。
示例1已知函数f(x)=2mx2-2(4-m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)的值至少有一个为正数,则实数的取值范围是( )A. (0,2) B. (0,8) C. (2,8) D. (-∞,0)解析:观察四个选项中有三个答案不含2,那么就取m=2代入验证是否符合题意即可,取m=2,则有f(x)=4x2-4x+1=(2x-1)2,这个二次函数的函数值f(x)>0对x∈R且x≠■恒成立,现只需考虑g(x)=2x当x=■时函数值是否为正数即可。这显然为正数。故m=2符合题意,排除不含m=2的选项A、C、D。所以选B。
特值法
在求解数学问题时,如果要证明一个问题是正确的,就要证明该问题在所有可能的情况下都正确,但是要否定一个问题,则只要举出一个反例就够了,基于这一原理,在解选择题时,可以通过取一些特殊数值,特殊点,特殊函数,特殊数列,特殊图形,特殊位置,特殊向量等对选项进行验证,从而可以否定和排除不符合题目要求的选项,再根据4个选项中只有一个选项符合题目要求这一信息,就可以间接地得到符合题目要求的选项,这是一种解选择题的特殊化策略。
示例2已知数列{an}对任意的p,q∈N满足ap+q=ap+aq,且a2=-6,那么a10等于( )A. -165 B. -33 C. -30 D. -21取an=kn(k≠0),容易计算满足题设ap+q=ap+aq,又a2=-6,∴k=-3,即an=-3n,∴a10=-30,故选C。解析:本题的直接求解策略是比较难于下笔的,选取一个符合题目要求的特殊数列可以把抽象问题具体化,从而迅速破解。运用特殊化策略是解高考数学选择题的最佳策略,解题时,要注意:(1)所选取的特例一定要简单,且符合题设条件;(2)特殊只能否定一般,不能肯定一般;(3)当选取某一特例出现两个或两个以上的选项都正确时,这是要根据题设要求选择另外的特例代入检验,直到排除所有的错误选项达到正确选择为止。
4初中数学的 方法 和技巧
注重数学基础知识的学习和积累
努力做到课前仔细预习,课上认真听讲,课后及时复习。一直以来,很多同学很不在乎学习数学的基础知识,认为基础知识在解题时用不上,尤其是数学的概念,定义和定理在考试时候也不会直接考到,学了也不会有用。其实这种想法是一个非常致命的错误,现在有很多学生,学习能力很强,也很有聪明,但在学习中忽视了基础知识的学习,没有抓住学习的重点,最后非常遗憾的没有学好数学。
其实,在中考中,大概有80%的题目都直接或者间接和基础知识有关系,而只有20%的题目才是我们所谓的难题,但是这些难题也都是由很多基础的题目综合而来的。所以要想学数学,首先应该也是必须要学好数学的基础知识。那么怎样学习基础知识呢?我的方法是 课前预习 ,课中听讲,课后复习。只要这三个方面坚持不懈的结合起来,我相信最后一定能提高学生的数学成绩。
培养和锻炼数学的解题方法和技巧
多做有针对性同时难度适当的同步练习,循序渐进,周而复始。很多同学在学习数学的过程中非常地努力,也知道要做大量的习题,有的甚至还自觉规定每天的做题数量,但是最后数学成绩提高也不是很明显。这是为什么呢?我想很大程度上是由于这些同学所做的习题没有针对性。
对于做题,我的观点是不仅要做题,还要做好题,在这里我想说的是我们学而思的练习都是经过各个老师精挑细选的习题,又经过无数学员的检验,可以说是非常有针对性,当然啦现在书店中很多习题资料也很不错,希望大家能仔细挑选。同时,不仅要针对性练习,更重要的是要对做过的习题不断地 总结 和 反思 ,总结自己为什么做错了,错在哪里了,那么正确的思路又是什么,等等,只要经过这样的反复思考,我相信咱们学员的学习成绩一定会有一个很大的提高。
初中数学选择填空答题 技巧大全 相关 文章 :
1. 初中数学常用的10种解题方法
2. 初中数学选择题的解题技巧
3. 初中数学的选择题、填空题和应用题解题法
4. 数学初一的选择题解法大全
5. 数学选择题答题的十大方法
6. 初二数学压轴题答题技巧
7. 初中数学解题方法大汇总
8. 中考数学的各种题型做题方法
9. 初中数学解题技巧与方法
人教版八年级数学知识点
学习从来无捷径。每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要练的。下面是我给大家整理的一些 八年级 数学的知识点,希望对大家有所帮助。
初二下册数学知识点归纳北师大版
第一章分式
1、分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变
2、分式的运算
(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减
3、整数指数幂的加减乘除法
4、分式方程及其解法
第二章反比例函数
1、反比例函数的表达式、图像、性质
图像:双曲线
表达式:y=k/x(k不为0)
性质:两支的增减性相同;
2、反比例函数在实际问题中的应用
第三章勾股定理
1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方
2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
初二数学下册知识点归纳
直角三角形
◆备考兵法
1.正确区分勾股定理与其逆定理,掌握常用的勾股数.
2.在解决直角三角形的有关问题时,应注意以勾股定理为桥梁建立方程(组)来解决问题,实现几何问题代数化.
3.在解决直角三角形的相关问题时,要注意题中是否含有特殊角(30°,45°,60°).若有,则应运用一些相关的特殊性质解题.
4.在解决许多非直角三角形的计算与证明问题时,常常通过作高转化为直角三角形来解决.
5.折叠问题是新中考 热点 之一,在处理折叠问题时,动手操作,认真观察,充分发挥空间 想象力 ,注意折叠过程中,线段,角发生的变化,寻找破题思路.
三角形的重心
已知:△ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB于F。求证:F为AB中点。
证明:根据燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再应用燕尾定理即得AF=BF,命题得证。
重心的几条性质:
1.重心和三角形3个顶点组成的3个三角形面积相等。
2.重心到三角形3个顶点距离的平方和最小。
3.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3纵坐标:(Y1+Y2+Y3)/3竖坐标:(Z1+Z2+Z3)/3
4重心到顶点的距离与重心到对边中点的距离之比为2:1。
5.重心是三角形内到三边距离之积的点。
如果用塞瓦定理证,则极易证三条中线交于一点。
初二数学 学习 经验 心得
学好初中数学课前要预习
初中生想要学好数学,那么就要利用课前的时间将课上老师要讲的内容预习一下。初中数学课前的预习是要明白老师在课上大致所讲的内容,这样有利于和方便初中生整理知识结构。
初中生 课前预习 数学还能够知道自己有哪些不明白的知识点,这样在课上就会集中注意力去听,不会出现溜号和走神的情况。同时课前预习还可以将知识点形成体系,可以帮助初中生建立完整的知识结构。
2学习初中数学课上是关键
初中生想要学好学生,在课上就是一个字:跟。上初中数学课时跟住老师,老师讲到哪里一定要跟上,仔细看老师的板书,随时知道老师讲的是哪里,涉及到的知识点是什么。有的初中生喜欢记笔记,提醒大家,初中数学课上的时候尽量不要记笔记。
你的主要目的是跟着老师,而不是一味的记笔记,即使有不会的地方也要快速简短的记下来,可以在课后完善。跟上老师的思维是最重要的,这就意味着你明白了老师的分析和解题过程。
3课后可以适当做一些初中数学基础题
在每学完一课后,初中生可以在课后做一些初中数学的基础题型,在做这样的题时,建议大家是,不要出现错误的情况,做完题后要学会思考和整理。当你的初中数学基础题没问题的时候,就可以做一些有点难度的提升题了,如果做不出来可以根据解析看题。
但是记住千万不要大量的做这类题,初中生偶尔做一次有难度的题还是对数学的学习有帮助的,但是如果将重点放在这上面,没有什么好处。同时要学会整理,将自己错题归纳并 总结 ,
数学是由简单明了的事项一步一步地发展而来,所以,只要学习数学的人老老实实地、一步一步地去理解,并同时记住其要点,以备以后之需用,就一定能理解其全部内容.就是说,若理解了第一步,就必然能理解第二步,理解了第一步、第二步,就必然能理解第三步.这好比梯子的阶级,在登梯子时,一级一级地往上登,无论多小的人,只要他的腿长足以跨过一级阶梯,就一定能从第一级登上第二级,从第二级登上第三级、第四级,…….这时,只不过是反复地做同一件事,故不管谁都应该会做.
八年级数学重要知识点相关 文章 :
★ 八年级数学知识点整理归纳
★ 八年级数学知识点整理
★ 初二数学上册知识点总结
★ 八年级数学知识点归纳
★ 八年级数学知识点归纳总结
★ 初二数学知识点总结
★ 八年级数学知识点总结
★ 八年级数学知识点总结归纳
★ 初二数学知识点复习整理
学习知识要善于思考,思考,再思考。每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学作为最烧脑的科目之一,也是要记、要背、要讲练的。下面是我给大家整理的一些 八年级 数学的知识点,希望对大家有所帮助。
初二上学期数学知识点归纳
分式方程
一、理解定义
1、分式方程:含分式,并且分母中含未知数的方程——分式方程。
2、解分式方程的思路是:
(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程。
(2)解这个整式方程。
(3)把整式方程的根带入最简公分母,看结果是不是为零,使最简公分母为零的根是原方程的增根,必须舍去。
(4)写出原方程的根。
“一化二解三检验四 总结 ”
3、增根:分式方程的增根必须满足两个条件:
(1)增根是最简公分母为0;(2)增根是分式方程化成的整式方程的.根。
4、分式方程的解法:
(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;
(3)解整式方程;(4)验根;
注:解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。
分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
5、分式方程解实际问题
步骤:审题—设未知数—列方程—解方程—检验—写出答案,检验时要注意从方程本身和实际问题两个方面进行检验。
二、轴对称图形:
一个图形沿一条直线对折,直线两旁的部分能够完全重合。这条直线叫做对称轴。互相重合的点叫做对应点。
1、轴对称:
两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。这条直线叫做对称轴。互相重合的点叫做对应点。
2、轴对称图形与轴对称的区别与联系:
(1)区别。轴对称图形讨论的是“一个图形与一条直线的对称关系”;轴对称讨论的是“两个图形与一条直线的对称关系”。
(2)联系。把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。
3、轴对称的性质:
(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线互相平行。
三、用坐标表示轴对称
1、点(x,y)关于x轴对称的点的坐标为(x,-y);
2、点(x,y)关于y轴对称的点的坐标为(-x,y);
3、点(x,y)关于原点对称的点的坐标为(-x,-y)。
四、关于坐标轴夹角平分线对称
点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)
点P(x,y)关于第二、四象限坐标轴夹角平分线y=-x对称的点的坐标是(-y,-x)
八年级数学知识点
1、全等三角形的对应边、对应角相等
2、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等
3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等
4、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等
5、边边边公理(SSS)有三边对应相等的两个三角形全等
6、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等
7、定理1在角的平分线上的点到这个角的两边的距离相等
8、定理2到一个角的两边的距离相同的点,在这个角的平分线上
9、角的平分线是到角的两边距离相等的所有点的集合
10、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
11、推论1等腰三角形顶角的平分线平分底边并且垂直于底边
12、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
13、推论3等边三角形的各角都相等,并且每一个角都等于60°
14、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
15、推论1三个角都相等的三角形是等边三角形
16、推论2有一个角等于60°的等腰三角形是等边三角形
17、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
18、直角三角形斜边上的中线等于斜边上的一半
19、定理线段垂直平分线上的点和这条线段两个端点的距离相等
20、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
21、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
22、定理1关于某条直线对称的两个图形是全等形
23、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
24、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
25、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
26、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
27、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形
初二 数学学习方法 十大技巧
1、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂4、判别式法与韦达定理
一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
6、构造法
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
7、反证法
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;/至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
8、面积法
平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
9、几何变换法
在数学问题的研究中,,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。
几何变换包括:(1)平移;(2)旋转;(3)对称。
10、客观性题的解题方法
选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。
填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。
要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。
(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。
(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。
(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。
(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。
(5)图解法:借助于符合题设条件的图形或图像的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。
(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法。
人教版八年级数学知识点相关 文章 :
★ 人教版八年级数学上册知识点总结
★ 八年级数学上册知识点总结人教版
★ 人教版八年级数学上册知识点整理
★ 八年级数学知识点整理归纳
★ 八年级数学知识点整理
★ 人教版八年级上册数学课本知识点归纳
★ 初二数学知识点归纳上册人教版
★ 人教版八年级数学上册知识点
★ 人教版八年级上册数学知识点总结
★ 新人教版八年级数学上册知识点
本文来自作者[猫巷少女紫琼]投稿,不代表机氪号立场,如若转载,请注明出处:https://jpker.com/jke/6731.html
评论列表(4条)
我是机氪号的签约作者“猫巷少女紫琼”!
希望本篇文章《初中数学选择填空答题技巧大全_2》能对你有所帮助!
本站[机氪号]内容主要涵盖:生活百科,小常识,生活小窍门,知识分享
本文概览: 答题是对于知识点掌握情况的一种体现,要让学生学得懂做得出,数学答题技巧就显得尤为重要。下面是我为大家整理的关于初中数学选择填空答题技巧,希望对您有所帮助。欢迎大家阅读参考学习...